论文标题

镜头空间的符号填充物

Symplectic fillings and cobordisms of lens spaces

论文作者

Etnyre, John B., Roy, Agniva

论文摘要

我们完成了镜头空间紧密接触结构的符号填充的分类。特别是,我们表明,在$ l(p,q)$上几乎已公开的接触结构的$ x $的任何符合性填充$ x $都有另一种符号结构,该结构填充了$ l(p,q)$的普遍紧密接触结构。此外,我们表明,$ L(P,Q)$具有最大第二同源性的Stein填充是由磁盘捆绑包的管道给出的。我们还考虑了在镜头空间之间构建符合性恢复的问题,并报告一些部分结果。

We complete the classification of symplectic fillings of tight contact structures on lens spaces. In particular, we show that any symplectic filling $X$ of a virtually overtwisted contact structure on $L(p,q)$ has another symplectic structure that fills the universally tight contact structure on $L(p,q)$. Moreover, we show that the Stein filling of $L(p,q)$ with maximal second homology is given by the plumbing of disk bundles. We also consider the question of constructing symplectic cobordisms between lens spaces and report some partial results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源