论文标题

图像超分辨率的跨尺度内部图神经网络

Cross-Scale Internal Graph Neural Network for Image Super-Resolution

论文作者

Zhou, Shangchen, Zhang, Jiawei, Zuo, Wangmeng, Loy, Chen Change

论文摘要

自然图像中的非本地自相似性已被充分研究了图像恢复的有效先验。但是,对于单图像超分辨率(SISR),大多数现有的深度非本地方法(例如,非本地神经网络)仅在相同的低分辨率(LR)输入图像中利用相似的斑块。因此,恢复仅限于使用相同的信息,同时忽略了其他规模的潜在高分辨率(HR)线索。在本文中,我们探讨了自然图像的跨尺度贴片复发特性,即类似的斑块往往会在不同的尺度上复发很多次。这是使用新型的跨尺度内部图神经网络(IGNN)实现的。具体而言,我们通过搜索LR图像中每个查询补丁的缩写采样的LR图像中的K-Nearest相邻贴片来动态构建跨尺度图。然后,我们在LR图像中获取相应的K HR相邻贴片,并根据构造图的边缘标签适应它们。这样,可以将人力资源信息从K HR相邻的补丁传递到LR查询补丁,以帮助其恢复更详细的纹理。此外,这些内部图像特定的LR/HR示例也是从训练数据集中学到的外部信息的重要补充。广泛的实验证明了IGNN针对最先进的SISR方法的有效性,包括标准基准上的现有非本地网络。

Non-local self-similarity in natural images has been well studied as an effective prior in image restoration. However, for single image super-resolution (SISR), most existing deep non-local methods (e.g., non-local neural networks) only exploit similar patches within the same scale of the low-resolution (LR) input image. Consequently, the restoration is limited to using the same-scale information while neglecting potential high-resolution (HR) cues from other scales. In this paper, we explore the cross-scale patch recurrence property of a natural image, i.e., similar patches tend to recur many times across different scales. This is achieved using a novel cross-scale internal graph neural network (IGNN). Specifically, we dynamically construct a cross-scale graph by searching k-nearest neighboring patches in the downsampled LR image for each query patch in the LR image. We then obtain the corresponding k HR neighboring patches in the LR image and aggregate them adaptively in accordance to the edge label of the constructed graph. In this way, the HR information can be passed from k HR neighboring patches to the LR query patch to help it recover more detailed textures. Besides, these internal image-specific LR/HR exemplars are also significant complements to the external information learned from the training dataset. Extensive experiments demonstrate the effectiveness of IGNN against the state-of-the-art SISR methods including existing non-local networks on standard benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源