论文标题
双曲线表面的ERD距离不同
Erdős distinct distances in hyperbolic surfaces
论文作者
论文摘要
在本文中,我们介绍了Fuchsian群体的“大地覆盖率”的概念,该群体召唤双曲平面中基本多边形的副本,以覆盖成对的代表对相应双曲表面中的距离。然后,我们使用测量覆盖数字的估计值来研究双曲线表面中不同的距离问题。特别是,对于从一大批双曲线表面中的$ y $,我们建立了几乎最佳的限制$ \ geq c(y)n/\ log n $,用于由$ y $中任何$ n $点确定的不同距离,其中$ c(y)> 0 $是仅在$ y $上的$ c(y)> 0 $。特别是,对于$ y $是模块化表面或属属$ g \ geq 2 $的标准常规,我们明确评估$ c(y)$。我们还得出了新的总产品类型估计。
In this paper, we introduce the notion of "geodesic cover" for Fuchsian groups, which summons copies of fundamental polygons in the hyperbolic plane to cover pairs of representatives realizing distances in the corresponding hyperbolic surface. Then we use estimates of geodesic-covering numbers to study the distinct distances problem in hyperbolic surfaces. Especially, for $Y$ from a large class of hyperbolic surfaces, we establish the nearly optimal bound $\geq c(Y)N/\log N$ for distinct distances determined by any $N$ points in $Y$, where $c(Y)>0$ is some constant depending only on $Y$. In particular, for $Y$ being modular surface or standard regular of genus $g\geq 2$, we evaluate $c(Y)$ explicitly. We also derive new sum-product type estimates.