论文标题
使用深MDN的端到端服务功能链的概率界限
Probabilistic Bounds on the End-to-End Delay of Service Function Chains using Deep MDN
论文作者
论文摘要
确保服务系统的端到端服务水平协议(SLA)约束的一致性是一项艰巨的任务,需要统计措施超出平均延迟。在本文中,我们研究了具有复合服务(例如服务功能链)系统中端到端延迟分布的实时预测。为了拥有一般框架,我们使用排队理论对服务系统进行建模,同时还采用统计学习方法来避免排队理论方法的局限性,例如平稳性假设或其他通常用于使分析数学拖延的近似值。具体而言,我们使用深层混合物密度网络(MDN)来预测给定网络状态的延迟的端到端分布。结果,我们的方法足够通用,可以应用于不同的情况和应用程序。我们的评估表明,学到的分布与模拟之间的匹配良好,这表明所提出的方法是在不适用模拟或理论方法的更复杂系统的端到端延迟端到端提供概率界限的好候选者。
Ensuring the conformance of a service system's end-to-end delay to service level agreement (SLA) constraints is a challenging task that requires statistical measures beyond the average delay. In this paper, we study the real-time prediction of the end-to-end delay distribution in systems with composite services such as service function chains. In order to have a general framework, we use queueing theory to model service systems, while also adopting a statistical learning approach to avoid the limitations of queueing-theoretic methods such as stationarity assumptions or other approximations that are often used to make the analysis mathematically tractable. Specifically, we use deep mixture density networks (MDN) to predict the end-to-end distribution of the delay given the network's state. As a result, our method is sufficiently general to be applied in different contexts and applications. Our evaluations show a good match between the learned distributions and the simulations, which suggest that the proposed method is a good candidate for providing probabilistic bounds on the end-to-end delay of more complex systems where simulations or theoretical methods are not applicable.