论文标题

来自强磁热QCD等离子体的光子发射的椭圆度

Ellipticity of photon emission from strongly magnetized hot QCD plasma

论文作者

Wang, Xinyang, Shovkovy, Igor A., Yu, Lang, Huang, Mei

论文摘要

通过利用光子极化张量的假想部分在光夸克的过渡方面,我们研究了从强磁化夸克 - 胶状等离子体中直接光子发射的角度依赖性。由于磁场,领先的订单光子速率来自耦合的三个过程中的三个过程$α_s$:(i)夸克拆分($ q \ rightarrow q+γ$),(ii)antiquark sprakiting($ \ bar {q} \ rightarrow \ bar rightarrow \ bar \ bar \ bar {q} quique {q}+qu}+γ; + \ bar {q} \rightarrowγ$)。在广泛的高温,$ t \ gtrsimm_π$和强磁场,$ | eb | | \ gtrsimm_π^2 $中,直接光子产生由两个分裂过程主导。我们表明,夸克状态的Landau级量化在光子发射的能量和角度依赖性中起重要作用。除其他事项外,它导致光子椭圆系数$ v_2 $的非平凡动量依赖性,在小横向动量处占据负值,而在大横向动量处的正值。这两个制度之间的交叉发生在$ k_t \ simeq \ sqrt {| eb |} $左右。在用于重型离子碰撞的应用中,这表明直接光子的$ v_2 $的大价值可以部分由夸克 - 格鲁隆等离子体中的磁场来解释。

By making use of an explicit representation for the imaginary part of the photon polarization tensor in terms of transitions between the Landau levels of light quarks, we study the angular dependence of direct photon emission from a strongly magnetized quark-gluon plasma. Because of the magnetic field, the leading order photon rate comes from the three processes of the zeroth order in the coupling constant $α_s$: (i) the quark splitting ($q\rightarrow q+γ$), (ii) the antiquark splitting ($\bar{q} \rightarrow \bar{q}+γ$), and (iii) the quark-antiquark annihilation ($q + \bar{q}\rightarrow γ$). In a wide range of moderately high temperatures, $T\gtrsim m_π$, and strong magnetic fields, $|eB|\gtrsim m_π^2$, the direct photon production is dominated by the two splitting processes. We show that the Landau-level quantization of quark states plays an important role in the energy and angular dependence of the photon emission. Among other things, it leads to a nontrivial momentum dependence of the photon ellipticity coefficient $v_2$, which takes negative values at small transverse momenta and positive values at large transverse momenta. The crossover between the two regimes occurs around $k_T\simeq \sqrt{|eB|}$. In application to heavy-ion collisions, this suggests that a large value of $v_2$ for the direct photons could be explained in part by the magnetic field in the quark-gluon plasma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源