论文标题
研究相对论影响对铂复合物具有光激活活性对癌细胞的吸收光谱的影响
Investigating the influence of relativistic effects on absorption spectra for platinum complexes with light-activated activity against cancer cells
论文作者
论文摘要
我们报告了对所谓的光激活化学疗法(PACT),Trans-Trans-Trans- [pt(n3)2(oh)2(nh3)2]和cis-trans-cis--cis- cis- [pt(n3)2(n3)2(n3)2(n3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3)2(nh3),对相对论的作用对两个原型复合物的相对论作用进行了首次研究。光激活机制。第一步通常是将其UV-VIS光谱合理化,因为时间依赖性密度功能理论(TD-DFT)是必不可少的工具。我们使用系统的一系列非权利主义(NR),标量 - 偏见(SR)和四组分(4C)汉密尔顿人进行了TD-DFT计算。在4C和NR框架内计算出的光谱之间存在很大的差异,而在SR框架中,最强烈的特征(在300 nm以下的较高能量下发现)可以很好地复制。然而,基本过渡可能会受到4C框架中引入的自旋轨道耦合的强烈影响:虽然这可能会影响光谱中的强烈和较小的过渡,但其影响最明显,对于低于300 nm的较低能量下的较弱的过渡。由于所研究的复合物用300 nm以上的波长激活,因此采用一种明确包含自旋轨道偶联的方法对于合理化激活机制可能至关重要。所有计算均使用CAM-B3LYP和B3LYP功能进行;我们通常发现前者与实验光谱相比表现最佳。
We report the first investigation of relativistic effects on the UV-vis spectra of two prototype complexes for so-called photo-activated chemotherapy (PACT), trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] and cis-trans-cis-[Pt(N3)2(OH)2(NH3)2].In PACT, design of new drugs requires in-depth understanding of the photo-activation mechanisms. A first step is usually to rationalize their UV-vis spectra for which time-dependent density functional theory (TD-DFT) is an indispensable tool. We carried out TD-DFT calculations with a systematic series of non-relativistic(NR), scalar-relativistic (SR), and four-component (4c) Hamiltonians. Large differences are found between spectra calculated within 4c and NR frameworks, while the most intense features (found at higher energies below 300 nm) can be reasonably well reproduced within a SR framework. Yet the underlying transitions can be strongly influenced by spin-orbit coupling introduced in the 4c framework: while this can affect both intense and less intense transitions in the spectra, the effect is most pronounced for weaker transitions at lower energies, above 300 nm. Since the investigated complexes are activated with light of wavelengths above 300 nm, employing a method with explicit inclusion of spin-orbit coupling may be crucial to rationalize the activation mechanism. All calculations were carried out with both the CAM-B3LYP and B3LYP functionals; we generally find the former to perform best in comparison with experimental spectra.