论文标题

与F(r)重力相关的指数幂律通货膨胀的精确和缓慢的解决方案

Exact and slow-roll solutions for exponential power-law inflation connected with f(R) gravity and observational constraints

论文作者

Fomin, I. V., Chervon, S. V.

论文摘要

我们研究了指数幂律通货膨胀是早期宇宙的现象学上正确模型的能力。 GR标量宇宙学方程我们在Ivanov-Salopek-Bond(或Hamilton-Jacobi喜欢)表示中研究,其中Hubble参数$ H $是标量场$ ϕ $的功能。这种方法承认计算给定的$ h(ϕ)$的潜力,并因此以$ f(r)$重建参数形式重建。通过这种方式,使用模型参数的约束重建了Starobinsky的潜力和非最低HIGGS电位(因此,相应的$ F(R)$ GRAVITY)重建。同样,与观察结果(Planck 2018)的数据进行了比较,表明,在广泛的指数power-power-law模型的参数范围内,这两个模型均给出了标量光谱指数和张量与量表比的正确值。

We investigate an ability of the exponential power-law inflation to be phenomenologically correct model of the early universe. GR scalar cosmology equations we study in Ivanov-Salopek-Bond (or Hamilton-Jacobi like) representation where the Hubble parameter $H$ is the function of a scalar field $ϕ$. Such approach admits calculation of the potential for given $H(ϕ)$ and consequently reconstruction of $f(R)$ gravity in parametric form. By this manner the Starobinsky potential and non-minimal Higgs potential (and consequently the corresponding $f(R)$ gravity) were reconstructed using constraints on model's parameters. Also comparison to observation (PLANCK 2018) data shows that both models give correct values for scalar spectral index and tensor-to-scalar ratio under wide range of exponential-power-law model's parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源