论文标题
围绕cuboctaheron I:添加剂案例的缩小四边形方程式
Reduction of quad-equations consistent around a cuboctahedron I: additive case
论文作者
论文摘要
在本文中,我们考虑了一个新的部分差异方程式系统的降低,这是在我们以前的论文(Joshi和Nakazono,Arxiv:1906.06650)中获得的,并证明围绕一个CuboctoCtohedron而言是一致的。我们表明,该系统通过考虑定期减少由重叠的cuboctoctahedra构建的三维晶格,从而减少到$ a_2^{(1)\ ast} $ - 键入离散的painlevé方程。
In this paper, we consider a reduction of a new system of partial difference equations, which was obtained in our previous paper (Joshi and Nakazono, arXiv:1906.06650) and shown to be consistent around a cuboctahedron. We show that this system reduces to $A_2^{(1)\ast}$-type discrete Painlevé equations by considering a periodic reduction of a three-dimensional lattice constructed from overlapping cuboctahedra.