论文标题

围绕cuboctaheron I:添加剂案例的缩小四边形方程式

Reduction of quad-equations consistent around a cuboctahedron I: additive case

论文作者

Joshi, Nalini, Nakazono, Nobutaka

论文摘要

在本文中,我们考虑了一个新的部分差异方程式系统的降低,这是在我们以前的论文(Joshi和Nakazono,Arxiv:1906.06650)中获得的,并证明围绕一个CuboctoCtohedron而言是一致的。我们表明,该系统通过考虑定期减少由重叠的cuboctoctahedra构建的三维晶格,从而减少到$ a_2^{(1)\ ast} $ - 键入离散的painlevé方程。

In this paper, we consider a reduction of a new system of partial difference equations, which was obtained in our previous paper (Joshi and Nakazono, arXiv:1906.06650) and shown to be consistent around a cuboctahedron. We show that this system reduces to $A_2^{(1)\ast}$-type discrete Painlevé equations by considering a periodic reduction of a three-dimensional lattice constructed from overlapping cuboctahedra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源