论文标题

控制问题具有高阶的差异限制

Control problems with differential constraints of higher order

论文作者

Cardin, Franco, Giannotti, Cristina, Spiro, Andrea

论文摘要

我们认为成本最小化控制问题,其中动态系统受Euler-Lagrange类型的高阶微分方程的约束。遵循第一作者和第三作者的前几篇论文的想法,我们证明了控制$ u_o(t)$的曲线和一组初始条件$σ_O$ $ $ $为所考虑类型的控制问题提供了最佳解决方案,并且仅当适当的双积分大于或沿任何同质$(u(t,s),=(u(t,s))$ u _(u(s))$ u _(s)$ u _ cur cur cur cur cur cur y(u(t,s)) 0)$和$σ_O=σ(0)$。该属性称为“最小劳动原则”。根据这一原则,我们得出了经典的Pontryagin最大原理的概括,该原理在Euler-Lagrange类型的高阶差异约束下,而没有固定初始数据的假设。

We consider cost minimising control problems, in which the dynamical system is constrained by higher order differential equations of Euler-Lagrange type. Following ideas from a previous paper by the first and the third author, we prove that a curve of controls $u_o(t)$ and a set of initial conditions $σ_o$ gives an optimal solution for a control problem of the considered type if and only if an appropriate double integral is greater than or equal to zero along any homotopy $(u(t, s), σ(s))$ of control curves and initial data starting from $u_o(t) = u(t, 0)$ and $σ_o = σ(0)$. This property is called "Principle of Minimal Labour". From this principle we derive a generalisation of the classical Pontryagin Maximum Principle that holds under higher order differential constraints of Euler-Lagrange type and without the hypothesis of fixed initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源