论文标题
球形电解质系统的两流体流体动力模型
Two-fluid, hydrodynamic model for spherical electrolyte systems
论文作者
论文摘要
离子系统中电荷载体之间的空间相互作用效应在古典麦克斯韦描述之外起着相当大的作用。我们发展了一个非局部,两流体的电荷流体动力学理论和研究离子等离子体效应,即。 e。电解质中的集体电荷振荡。离子空间色散来自正电荷动力学和负电荷动力学,并影响(远)红外线。尽管有高度古典的参数,但对于跨越数量级的粒径,非局部淬火量高达90%。值得注意的是,与固体金属纳米颗粒相比,离子系统通过离子浓度,质量和电荷广泛调谐。离子的非局部软等离子体理论与桥接硬物质理论桥接的生物学和化学系统有关,并允许对电解质中的非经典作用进行与固体金属颗粒完全类似的研究。提出的半古典方法允许研究等离子光催化,将非局部方面引入电解质 - 金属相互作用。
Spatial interaction effects between charge carriers in ionic systems play a sizable role beyond a classical Maxwellian description. We develop a nonlocal, two-fluid, hydrodynamic theory of charges and study ionic plasmon effects, i. e. collective charge oscillations in electrolytes. Ionic spatial dispersion arises from both positive and negative charge dynamics with an impact in the (far-)infrared. Despite highly classical parameters, nonlocal quenching of up to 90% is observed for particle sizes spanning orders of magnitude. Notably, the ionic system is widely tunable via ion concentration, mass and charge, in contrast to solid metal nanoparticles. A nonlocal soft plasmonic theory for ions is relevant for biological and chemical systems bridging hard and soft matter theory and allowing the investigation of non-classical effects in electrolytes in full analogy to solid metal particles. The presented semi-classical approach allows studying plasmonic photo-catalysis introducing nonlocal aspects into electrolyte-metal interactions.