论文标题

神经网络压缩中的混合张量分解

Hybrid Tensor Decomposition in Neural Network Compression

论文作者

Wu, Bijiao, Wang, Dingheng, Zhao, Guangshe, Deng, Lei, Li, Guoqi

论文摘要

深度神经网络(DNNS)由于从大数据中学习高级功能的能力,最近在各种人工智能(AI)应用程序中实现了令人印象深刻的突破。但是,由于越来越复杂的应用程序所需的模型尺寸越来越大,但目前对计算资源特别是存储消耗的需求正在增长。为了解决这个问题,已经应用了几种张量分解方法,包括张量训练(TT)和张量环(TR)来压缩DNN并显示出相当大的压缩效果。在这项工作中,我们介绍了分层塔克(HT),这是一种经典但很少使用的张量分解方法,以研究其在神经网络压缩中的能力。我们将重量矩阵和卷积内核转换为HT和TT格式进行比较研究,因为后者是使用最广泛的分解方法和HT的变体。我们从理论上和实验上进一步发现,HT格式在压缩权重矩阵方面具有更好的性能,而TT格式更适合压缩卷积内核。基于这一现象,我们通过将TT和HT组合在一起以分别压缩卷积和完全连接的部分,提出了一种混合张量分解策略,并且比仅在卷积神经网络(CNNS)上使用TT或HT格式,并获得更好的准确性。我们的工作阐明了混合张量分解对神经网络压缩的前景。

Deep neural networks (DNNs) have enabled impressive breakthroughs in various artificial intelligence (AI) applications recently due to its capability of learning high-level features from big data. However, the current demand of DNNs for computational resources especially the storage consumption is growing due to that the increasing sizes of models are being required for more and more complicated applications. To address this problem, several tensor decomposition methods including tensor-train (TT) and tensor-ring (TR) have been applied to compress DNNs and shown considerable compression effectiveness. In this work, we introduce the hierarchical Tucker (HT), a classical but rarely-used tensor decomposition method, to investigate its capability in neural network compression. We convert the weight matrices and convolutional kernels to both HT and TT formats for comparative study, since the latter is the most widely used decomposition method and the variant of HT. We further theoretically and experimentally discover that the HT format has better performance on compressing weight matrices, while the TT format is more suited for compressing convolutional kernels. Based on this phenomenon we propose a strategy of hybrid tensor decomposition by combining TT and HT together to compress convolutional and fully connected parts separately and attain better accuracy than only using the TT or HT format on convolutional neural networks (CNNs). Our work illuminates the prospects of hybrid tensor decomposition for neural network compression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源