论文标题
异构V2X通信的智能任务卸载
Intelligent Task Offloading for Heterogeneous V2X Communications
论文作者
论文摘要
随着自动驾驶技术的快速发展,很难调和智能汽车任务中对高过程率的不断增长的冲突与资源约束的机载工程器之间的冲突。幸运的是,已经提出了车辆边缘计算(VEC)来满足紧迫的资源需求。由于汽车任务的延迟敏感性,只有具有多种访问技术的异质车辆网络可能能够应对这些挑战的挑战。在本文中,我们提出了一项智能任务卸载框架,在异质车辆网络中,具有三个车辆到所有设施(V2X)通信技术,即专用的短距离通信(DSRC),基于蜂窝的V2X(C-V2X)通信和米计(MMWave)通信。基于随机网络演算,本文首先得出具有一定的故障概率的不同卸载技术的延迟上限。此外,我们提出了一种联合Q学习方法,该方法最佳地利用可用资源来最大程度地减少通信/计算预算和卸载故障概率。仿真结果表明,就卸载故障概率和资源成本而言,我们提出的算法可以显着优于现有算法。
With the rapid development of autonomous driving technologies, it becomes difficult to reconcile the conflict between ever-increasing demands for high process rate in the intelligent automotive tasks and resource-constrained on-board processors. Fortunately, vehicular edge computing (VEC) has been proposed to meet the pressing resource demands. Due to the delay-sensitive traits of automotive tasks, only a heterogeneous vehicular network with multiple access technologies may be able to handle these demanding challenges. In this paper, we propose an intelligent task offloading framework in heterogeneous vehicular networks with three Vehicle-to-Everything (V2X) communication technologies, namely Dedicated Short Range Communication (DSRC), cellular-based V2X (C-V2X) communication, and millimeter wave (mmWave) communication. Based on stochastic network calculus, this paper firstly derives the delay upper bound of different offloading technologies with a certain failure probability. Moreover, we propose a federated Q-learning method that optimally utilizes the available resources to minimize the communication/computing budgets and the offloading failure probabilities. Simulation results indicate that our proposed algorithm can significantly outperform the existing algorithms in terms of offloading failure probability and resource cost.