论文标题
网络时钟同步与故障校正的弹性范围
Resilience Bounds of Network Clock Synchronization with Fault Correction
论文作者
论文摘要
物联网(IoT)将是实现更好的系统智能的主要数据生成基础架构。本文考虑了一个实用的隐私保护协作学习计划的设计和实施,其中一个好奇的学习协调员基于许多IoT对象的数据样本来训练更好的机器学习模型,而培训数据的原始形式的机密性则受到对协调员的保护。现有的分布式机器学习和数据加密方法会产生大量的计算和通信开销,使它们不适合用于资源受限的物联网对象。我们研究了一种在每个物联网对象上应用独立的随机投影的方法来混淆数据,并根据来自IoT对象的投影数据在协调器上训练深度神经网络。这种方法将照明计算开销引入了IoT对象,并将大多数工作负载移至可以具有足够计算资源的协调器。尽管物联网对象执行的独立预测解决了好奇的协调员与某些损害的物联网对象之间的潜在勾结,但它们显着提高了投影数据的复杂性。在本文中,我们利用深度学习的卓越学习能力在捕获复杂的模式中保持良好的学习表现。广泛的比较评估表明,这种方法的表现优于其他轻量级方法,这些方法适用于差异隐私和/或支持向量机,用于在光到中等数据模式复杂性的应用中学习。
The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light to moderate data pattern complexities.