论文标题

可测量函数的等效对称空间

Equimeasurable symmetric spaces of measurable function

论文作者

Muratov, Mustafa, Rubshtein, Ben-Zion

论文摘要

在本文中,我们考虑均值对称(重新安排不变)空间$ \ MATHBF { \ Mathbf {非原子测量$μ_1$和$μ_2$。 如果$ \ MATHBF {E} _1(ω_1,\ Mathcal {f} _1,μ_1)$是度量空间上的对称空间$(ω__1,\ Mathcal {f} _1,μ_1,μ_1)$ and $(ω_2,\ m nathcalcal) 成为一个度量空间,以至于$μ_1(ω_1)=μ_2(ω_2)$, 然后存在一个唯一的对称空间$ \ mathbf {e} _2(ω__2,\ Mathcal {f} _2,μ_2)$ on $(ω_2,\ Mathcal {f} _2,μ_2) 等于$ \ Mathbf {e} _1(ω_1,\ Mathcal {f} _1,μ_1)$。

In this paper we consider equimeasurable symmetric(rearrangement invariant) spaces $\mathbf{E}_1 = \mathbf{E}_1(Ω_1,\mathcal{F}_1,μ_1)$ and $\mathbf{E}_2 = \mathbf{E}_2(Ω_2,\mathcal{F}_2,μ_2)$ on a measure spaces $(Ω_1, \mathcal{F}_1,μ_1)$ and $(Ω_2,\mathcal{F}_2,μ_2)$ with finite or infinite $σ$-finite non-atomic measures $μ_1$ and $μ_2$. If $\mathbf{E}_1(Ω_1,\mathcal{F}_1,μ_1)$ be a symmetric space on a measure spaces $(Ω_1, \mathcal{F}_1,μ_1)$ and $(Ω_2,\mathcal{F}_2,μ_2)$ be a measure space such that $μ_1 (Ω_1)=μ_2(Ω_2)$, then there exists a unique symmetric space $\mathbf{E}_2(Ω_2,\mathcal{F}_2,μ_2)$ on $(Ω_2,\mathcal{F}_2,μ_2)$, which is equimeasurable to $ \mathbf{E}_1(Ω_1,\mathcal{F}_1,μ_1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源