论文标题
扩展标准的原子核模型,并用新的解释强力解释
Extending Standard Atomic Kernel Model with New Interpretation of Strong Forces
论文作者
论文摘要
本文提供了原子核的扩展模型 - 我们称其为YY模型,该模型允许从众所周知的标准模型中为强力进行新的描述。将核固定在一起的力(质子和中子)可以以新的方式表达。基于YY模型,与常规描述相比,原子核的结构描述细节将可能。 YY模型与标准模型兼容。但是,当对原子核内或周围的质子和中子的分布进行建模时,它允许非常微妙的考虑。此外,它可以以优雅的方式来解释许多亚原子过程。 YY模型预测了一些可以在更深层次的步骤中探索的亚原子。我们的方法还包括用于描述巨摩托学(空间,暗物质和宇宙学)的本地共同根。 遵循模型驱动的方法(一种在计算机科学和信息学中广泛使用的方法),本文中的研究将完全放在数学公式中。另外,变换中的能量平衡被排除在外。然后可以验证可以从这种新机制中得出的许多不同方面。我们希望在YY模型中获得许多其他物理学家的信心。他们可以通过添加其他描述性元素并将YY模型与已知的量子场理论以及广泛接受的空间和宇宙学的大爆炸理论联系起来,尤其是在有关暗物质的研究中,可以通过添加其他描述性元素并将YY模型联系到已知的量子场理论以及广泛接受的大爆炸理论来进行详细的理论和实验验证。
This paper gives an extended model of the atomic nucleus - we call it the YY model, which allows a new description for strong forces from the well-known Standard Model. The forces that hold the nucleus together (protons and neutrons) can be expressed in a new way. Based on the YY model, more structural description details for an atomic nucleus will be possible than is the case with the conventional description. The YY model is compatible with the standard model. However, it allows for very delicate considerations when modelling the distribution of protons and neutrons within or around an atomic nucleus. Furthermore, it can explain many subatomic processes in an elegant way. The YY model predicts some subatomic aspects that can be explored in a deeper step. Our approach also includes a native common root for the description of macrophysics (space, dark matter and cosmology). Following a model-driven approach - a methodology widely used in computer science and informatics - the investigations in this paper will completely dispense with mathematical formulations. In addition, energy balances in the transformations are left out. Many different aspects that can be derived from this new mechanism can then be verified. We hope to gain the confidence of many other physicists in the YY model. They could make detailed theoretical and experimental verifications by adding additional descriptive elements and linking the YY model to the known quantum field theories and the widely accepted big bang theories for space and cosmology, especially for research on dark matter.