论文标题
可简化通用多数据库医学图像细分的通用3D织物架构
Generalisable 3D Fabric Architecture for Streamlined Universal Multi-Dataset Medical Image Segmentation
论文作者
论文摘要
数据稀缺在医学图像分割的深度学习模型中很常见。以前的作品同时或通过转移学习来扩展训练集,提出了多数据集学习。但是,医疗图像数据集具有不同尺寸的图像和功能,并且同时为多个数据集开发模型具有挑战性。这项工作提出了织物图像表示编码网络(FIRENET),这是一种通用体系结构,用于涉及任意数量的数据集的同时多数据分割和传输学习。为了处理不同尺寸的图像和功能,3D织物模块用于封装许多多尺度的子体系结构。可以隐式地学习这些子构造的最佳组合,以最适合目标数据集。对于各种尺度的特征提取,在每个织物节点中使用了彻底的空间金字塔池(ASPP3D)的3D扩展,以覆盖丰富的图像特征。在第一个实验中,Firenet对人膝,肩膀和髋关节的多个肌肉骨骼数据集进行了3D通用骨分割,并表现出极好的同时多数据序列性能。当对转移学习进行测试时,FireNet进一步表现出出色的单个数据集性能(在前列腺数据集中进行预训练时),并显着改善了通用骨分割性能。以下实验涉及10个医学分割十项6lon(MSD)挑战数据集的同时分割。 FireNet显示出良好的多数据分割结果和高度多样的图像大小的适应性。在这两个实验中,FireNet的简化多数据集学习都没有一个统一的网络,该网络不需要高参数调整。
Data scarcity is common in deep learning models for medical image segmentation. Previous works proposed multi-dataset learning, either simultaneously or via transfer learning to expand training sets. However, medical image datasets have diverse-sized images and features, and developing a model simultaneously for multiple datasets is challenging. This work proposes Fabric Image Representation Encoding Network (FIRENet), a universal architecture for simultaneous multi-dataset segmentation and transfer learning involving arbitrary numbers of dataset(s). To handle different-sized image and feature, a 3D fabric module is used to encapsulate many multi-scale sub-architectures. An optimal combination of these sub-architectures can be implicitly learnt to best suit the target dataset(s). For diverse-scale feature extraction, a 3D extension of atrous spatial pyramid pooling (ASPP3D) is used in each fabric node for a fine-grained coverage of rich-scale image features. In the first experiment, FIRENet performed 3D universal bone segmentation of multiple musculoskeletal datasets of the human knee, shoulder and hip joints and exhibited excellent simultaneous multi-dataset segmentation performance. When tested for transfer learning, FIRENet further exhibited excellent single dataset performance (when pre-training on a prostate dataset), as well as significantly improved universal bone segmentation performance. The following experiment involves the simultaneous segmentation of the 10 Medical Segmentation Decathlon (MSD) challenge datasets. FIRENet demonstrated good multi-dataset segmentation results and inter-dataset adaptability of highly diverse image sizes. In both experiments, FIRENet's streamlined multi-dataset learning with one unified network that requires no hyper-parameter tuning.