论文标题

模型驱动的深度学习,用于大型Mu-Mimo,具有有限的阿尔如图

Model-Driven Deep Learning for Massive MU-MIMO with Finite-Alphabet Precoding

论文作者

He, Hengtao, Zhang, Mengjiao, Jin, Shi, Wen, Chao-Kai, Li, Geoffrey Ye

论文摘要

大量的多源多输入多输出(MU-MIMO)一直是第五代无线系统中的主流技术。为了减少高硬件成本和大量MU-MIMO的功耗,使用下链路传输中每个天线和射频(RF)链的低分辨率数字到Analog转换器(DAC),这为预编码设计带来了挑战。为了避免这些障碍,我们在本文中开发了一个模型驱动的深度学习(DL)网络,用于大规模的MU-MIMO,并具有有限的Alphabet预编码。网络的架构是通过展开迭代算法而专门设计的。与传统的最新技术相比,提出的基于DL的预码器在瑞利褪色通道下对通道估计误差的性能,复杂性和鲁棒性具有显着优势。

Massive multiuser multiple-input multiple-output (MU-MIMO) has been the mainstream technology in fifth-generation wireless systems. To reduce high hardware costs and power consumption in massive MU-MIMO, low-resolution digital-to-analog converters (DAC) for each antenna and radio frequency (RF) chain in downlink transmission is used, which brings challenges for precoding design. To circumvent these obstacles, we develop a model-driven deep learning (DL) network for massive MU-MIMO with finite-alphabet precoding in this article. The architecture of the network is specially designed by unfolding an iterative algorithm. Compared with the traditional state-of-the-art techniques, the proposed DL-based precoder shows significant advantages in performance, complexity, and robustness to channel estimation error under Rayleigh fading channel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源