论文标题

自下而上的人姿势估计通过对热图引导的自适应关键点估计进行排名

Bottom-Up Human Pose Estimation by Ranking Heatmap-Guided Adaptive Keypoint Estimates

论文作者

Sun, Ke, Geng, Zigang, Meng, Depu, Xiao, Bin, Liu, Dong, Zhang, Zhaoxiang, Wang, Jingdong

论文摘要

典型的自下而上的人姿势估计框架包括两个阶段,即关键点检测和分组。大多数现有的作品都致力于开发分组算法,例如,关联嵌入和我们在方法中采用的像素键盘回归。我们提出了几个方案,这些方案在改善关键点检测和分组(关键点回归)性能之前很少或不间研究。首先,我们利用按像素的关键点重点回归来利用关键点热图,而不是分开它们以改善关键点回归。其次,我们采用像素的空间变压器网络来学习适应性表示,以处理规模和方向差异,以进一步提高关键点回归质量。最后,我们提出了一个关节形状和热价评分方案,以促进更可能是真实姿势的估计姿势。加上平衡背景和关键点像素的权衡热图估计损失,从而提高了热图估计质量,我们获得了最新的自下而上的人类姿势估计结果。代码可在https://github.com/hrnet/hrnet-bottom-up-pose-astimation上获得。

The typical bottom-up human pose estimation framework includes two stages, keypoint detection and grouping. Most existing works focus on developing grouping algorithms, e.g., associative embedding, and pixel-wise keypoint regression that we adopt in our approach. We present several schemes that are rarely or unthoroughly studied before for improving keypoint detection and grouping (keypoint regression) performance. First, we exploit the keypoint heatmaps for pixel-wise keypoint regression instead of separating them for improving keypoint regression. Second, we adopt a pixel-wise spatial transformer network to learn adaptive representations for handling the scale and orientation variance to further improve keypoint regression quality. Last, we present a joint shape and heatvalue scoring scheme to promote the estimated poses that are more likely to be true poses. Together with the tradeoff heatmap estimation loss for balancing the background and keypoint pixels and thus improving heatmap estimation quality, we get the state-of-the-art bottom-up human pose estimation result. Code is available at https://github.com/HRNet/HRNet-Bottom-up-Pose-Estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源