论文标题

热力学机器通过最大的工作生产学习

Thermodynamic Machine Learning through Maximum Work Production

论文作者

Boyd, A. B., Crutchfield, J. P., Gu, M.

论文摘要

自适应系统(例如具有生存优势的生物生物,执行功能任务的自主机器人或运输细胞内营养素的运动蛋白)必须对其环境中的规律性和随机性进行建模,以充分利用热力学资源。类似但在纯粹的计算领域中,机器学习算法估算了模型,以捕获可预测的结构并确定训练数据中的无关噪声。这是通过优化性能指标(例如模型可能性)而发生的。如果实际实施,是否有一种感觉,通过机器学习估计的计算模型是物理上首选的?我们介绍了热力学原理,即工作生产是适应性物理剂的最相关性能指标,并将结果与​​指导机器学习的最大样本原理进行比较。在最有效地从其环境中收集能量的物理剂类别中,我们证明了有效的代理的模型明确确定其体系结构以及从环境中收获的有用工作。然后,我们证明为给定的环境数据选择最大工作代理对应于找到最大似然模型。这在非平衡热力学和动态学习之间建立了等效性。这样,最大化的工作最大化是一种组织原理,该原则是自适应热力学系统中学习的基础。

Adaptive systems -- such as a biological organism gaining survival advantage, an autonomous robot executing a functional task, or a motor protein transporting intracellular nutrients -- must model the regularities and stochasticity in their environments to take full advantage of thermodynamic resources. Analogously, but in a purely computational realm, machine learning algorithms estimate models to capture predictable structure and identify irrelevant noise in training data. This happens through optimization of performance metrics, such as model likelihood. If physically implemented, is there a sense in which computational models estimated through machine learning are physically preferred? We introduce the thermodynamic principle that work production is the most relevant performance metric for an adaptive physical agent and compare the results to the maximum-likelihood principle that guides machine learning. Within the class of physical agents that most efficiently harvest energy from their environment, we demonstrate that an efficient agent's model explicitly determines its architecture and how much useful work it harvests from the environment. We then show that selecting the maximum-work agent for given environmental data corresponds to finding the maximum-likelihood model. This establishes an equivalence between nonequilibrium thermodynamics and dynamic learning. In this way, work maximization emerges as an organizing principle that underlies learning in adaptive thermodynamic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源