论文标题

深海机器人成像模拟器

Deep Sea Robotic Imaging Simulator

论文作者

Song, Yifan, Nakath, David, She, Mengkun, Elibol, Furkan, Köser, Kevin

论文摘要

如今,水下视觉系统已广泛应用于海洋研究。但是,海洋中最大的部分 - 深海 - 仍然大部分未探索。由于技术挑战和巨大成本造成的物理局限性,仅从深海中拍摄了相对较少的图像集。深海图像与在浅水中拍摄的图像大不相同,该地区并没有得到社区的太多关注。深海图像的短缺以及用于评估和培训的相应地面真相数据已成为水下计算机视觉方法发展的瓶颈。因此,本文提出了一种基于物理模型的图像模拟解决方案,该解决方案使用内部纹理和深度信息作为输入,以生成由机器人在深海场景中采用的水下图像序列。与浅水条件不同,人造照明在深海形成中起着至关重要的作用,因为它强烈影响场景外观。我们的辐射图像形成模型考虑了衰减和散射效应,并在黑暗中共同移动聚光灯。通过对水下图像形成模型的详细分析和评估,我们提出了一个3D查找表结构,并结合了一种新颖的渲染策略,以改善模拟性能。这使我们能够在无人管理的水下车辆模拟器中整合互动的深海机器人视觉模拟。为了激发社区的进一步深入海景研究,我们将向公众发布深海图像转换器的源代码。

Nowadays underwater vision systems are being widely applied in ocean research. However, the largest portion of the ocean - the deep sea - still remains mostly unexplored. Only relatively few image sets have been taken from the deep sea due to the physical limitations caused by technical challenges and enormous costs. Deep sea images are very different from the images taken in shallow waters and this area did not get much attention from the community. The shortage of deep sea images and the corresponding ground truth data for evaluation and training is becoming a bottleneck for the development of underwater computer vision methods. Thus, this paper presents a physical model-based image simulation solution, which uses an in-air texture and depth information as inputs, to generate underwater image sequences taken by robots in deep ocean scenarios. Different from shallow water conditions, artificial illumination plays a vital role in deep sea image formation as it strongly affects the scene appearance. Our radiometric image formation model considers both attenuation and scattering effects with co-moving spotlights in the dark. By detailed analysis and evaluation of the underwater image formation model, we propose a 3D lookup table structure in combination with a novel rendering strategy to improve simulation performance. This enables us to integrate an interactive deep sea robotic vision simulation in the Unmanned Underwater Vehicles simulator. To inspire further deep sea vision research by the community, we will release the source code of our deep sea image converter to the public.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源