论文标题
具有不同感染性的流行模型
Epidemic models with varying infectivity
论文作者
论文摘要
我们引入了一个具有不同感染性和一般暴露和感染时期的流行病模型,其中每个人的感染性是自感染以来经过的时间的随机函数,这些功能是I.I.D.对于人口中的各个人。这种方法对感染年龄依赖性感染率进行了建模,并扩展了经典的SIR和SEIR模型。我们专注于感染过程(每次感染的全部感染力),并证明了大量功能定律(FLLN)。在该LLN的确定性限制中,感染过程和易感过程由二维确定性积分方程确定。然后,我们从其解决方案中再次使用积分方程得出了暴露,感染和恢复的过程。对于早期阶段,我们通过使用近似(非马克维亚)的分支过程直接研究随机模型,并表明流行病在非灭绝情况下以指数级增长,这与源自确定性线性化方程的生长速率相匹配。我们还使用这些方程来得出流行病早期的基本繁殖数$ R_0 $,就平均个人感染函数和流行病的增长率而言。
We introduce an epidemic model with varying infectivity and general exposed and infectious periods, where the infectivity of each individual is a random function of the elapsed time since infection, those function being i.i.d. for the various individuals in the population. This approach models infection-age dependent infectivity, and extends the classical SIR and SEIR models. We focus on the infectivity process (total force of infection at each time), and prove a functional law of large number (FLLN). In the deterministic limit of this LLN, the infectivity process and the susceptible process are determined by a two-dimensional deterministic integral equation. From its solutions, we then derive the exposed, infectious and recovered processes, again using integral equations. For the early phase, we study the stochastic model directly by using an approximate (non--Markovian) branching process, and show that the epidemic grows at an exponential rate on the event of non-extinction, which matches the rate of growth derived from the deterministic linearized equations. We also use these equations to derive the basic reproduction number $R_0$ during the early stage of an epidemic, in terms of the average individual infectivity function and the exponential rate of growth of the epidemic.