论文标题
传染病扩散的时空预测建模框架
Spatio-temporal predictive modeling framework for infectious disease spread
论文作者
论文摘要
开发和实施了使用高维偏微分方程的传染病传播的新型预测建模框架。代表感染人群的标量函数是在高维空间上定义的,其在所有方向上的演变都由人口平衡方程(PBE)描述。根据易感人群的相互作用,遵守距离规范,卫生水平和任何其他社会干预措施,在易感人群中引入了新的感染。此外,恢复,死亡,免疫力和所有上述参数都是在高维空间上建模的。为了体现上述框架的能力和特征,使用六维(时间,2D空间,感染严重程度,感染持续时间和人口年龄)PBE对COVID-19对COVID-19扩散的预后估计值。此外,提出了针对不同政策干预措施和人口行为的情景分析,从而有更多的见解对感染在疾病年龄,强度和人口年龄的时空传播。这些见解可用于科学知识的政策计划。
A novel predictive modeling framework for the spread of infectious diseases using high dimensional partial differential equations is developed and implemented. A scalar function representing the infected population is defined on a high-dimensional space and its evolution over all directions is described by a population balance equation (PBE). New infections are introduced among the susceptible population from non-quarantined infected population based on their interaction, adherence to distancing norms, hygiene levels and any other societal interventions. Moreover, recovery, death, immunity and all aforementioned parameters are modeled on the high-dimensional space. To epitomize the capabilities and features of the above framework, prognostic estimates of Covid-19 spread using a six-dimensional (time, 2D space, infection severity, duration of infection, and population age) PBE is presented. Further, scenario analysis for different policy interventions and population behavior is presented, throwing more insights into the spatio-temporal spread of infections across disease age, intensity and age of population. These insights could be used for science-informed policy planning.