论文标题
神经MCMC的深层涉及生成模型
Deep Involutive Generative Models for Neural MCMC
论文作者
论文摘要
我们介绍了深层涉及生成模型,这是一种用于深层生成建模的新体系结构,并使用它们来定义参与的神经MCMC,这是一种快速神经MCMC的新方法。一个参与生成模型代表概率内核$ g(ϕ \ mapsto ϕ')$作为一个辅助变量$π$的扩大状态空间上的涉及(即自转变)确定函数$ f(ϕ,π)$。我们展示了如何保留这些模型,以及如何使用辅助变量方案具有易于估计的接受率的辅助变量方案来制作有效的大都市 - 杂物更新。我们证明,深层涉及的生成模型及其具有体积的特殊情况是概率内核的通用近似值。该结果意味着,通过足够的网络容量和培训时间,它们可用于学习任意复杂的MCMC更新。我们定义了给定模拟数据的训练参数的损失函数和优化算法。我们还提供了初始实验,表明参与神经MCMC可以有效探索与杂种蒙特卡洛相比的多模式分布,并且比最近引入的神经MCMC技术比A-Nice-MC更快地收敛。
We introduce deep involutive generative models, a new architecture for deep generative modeling, and use them to define Involutive Neural MCMC, a new approach to fast neural MCMC. An involutive generative model represents a probability kernel $G(ϕ\mapsto ϕ')$ as an involutive (i.e., self-inverting) deterministic function $f(ϕ, π)$ on an enlarged state space containing auxiliary variables $π$. We show how to make these models volume preserving, and how to use deep volume-preserving involutive generative models to make valid Metropolis-Hastings updates based on an auxiliary variable scheme with an easy-to-calculate acceptance ratio. We prove that deep involutive generative models and their volume-preserving special case are universal approximators for probability kernels. This result implies that with enough network capacity and training time, they can be used to learn arbitrarily complex MCMC updates. We define a loss function and optimization algorithm for training parameters given simulated data. We also provide initial experiments showing that Involutive Neural MCMC can efficiently explore multi-modal distributions that are intractable for Hybrid Monte Carlo, and can converge faster than A-NICE-MC, a recently introduced neural MCMC technique.