论文标题
具有梯度指导采样的脑肿瘤图像的暗示性注释
Suggestive Annotation of Brain Tumour Images with Gradient-guided Sampling
论文作者
论文摘要
近年来,近年来,机器学习已被广泛用于医学图像分析,鉴于其在图像细分和分类任务中的表现有希望。作为一门数据驱动的科学,机器学习的成功,特别是受监督的学习,很大程度上取决于手动注释的数据集的可用性。对于医学成像应用,此类注释的数据集并不容易获取。策划带注释的医学图像集需要大量时间和资源。在本文中,我们为脑肿瘤图像提出了一个有效的注释框架,该框架能够为人类专家提供信息的样本图像。我们的实验表明,培训一个只有19%的分割模型提示的分割模型,来自Brats 2019数据集的患者扫描可以实现可比的性能,与在完整数据集中培训模型以完成整个肿瘤分割任务。它展示了一种有希望的方法来节省手动注释成本并提高医学成像应用中的数据效率。
Machine learning has been widely adopted for medical image analysis in recent years given its promising performance in image segmentation and classification tasks. As a data-driven science, the success of machine learning, in particular supervised learning, largely depends on the availability of manually annotated datasets. For medical imaging applications, such annotated datasets are not easy to acquire. It takes a substantial amount of time and resource to curate an annotated medical image set. In this paper, we propose an efficient annotation framework for brain tumour images that is able to suggest informative sample images for human experts to annotate. Our experiments show that training a segmentation model with only 19% suggestively annotated patient scans from BraTS 2019 dataset can achieve a comparable performance to training a model on the full dataset for whole tumour segmentation task. It demonstrates a promising way to save manual annotation cost and improve data efficiency in medical imaging applications.