论文标题
合奏Kalman倒置的自适应正则化
Adaptive regularisation for ensemble Kalman inversion
论文作者
论文摘要
我们为经典集合Kalman倒置(EKI)框架提出了一种新的正则化策略。该策略包括:(i)EKI更新公式中正则化参数的自适应选择,以及(ii)该方案早期停止的标准。与现有方法相反,我们的参数选择不依赖于其他对EKI效率产生严重影响的其他调整参数。我们使用将EKI解释为贝叶斯回火环境中的高斯近似值来激励我们的方法。我们表明,我们的参数选择控制了连续的回火度量之间对称的kulback-leibler差异。我们使用启发式统计差异原则进一步激发了我们的选择。 我们使用完整的电极模型使用电阻抗层析成像测试框架。采用了未知电导率的参数化,使我们能够表征平滑或不连续的(分段恒定)字段。我们从数值上表明,即使对于不连续的情况,EKI提出的正规化也可以产生有效,健壮和准确的估计值,即使是不连续的情况,这种情况倾向于需要更大的合奏和更多的迭代进行收敛。我们将提出的技术与标准选择方法进行比较,并证明该方法是解决实用/操作环境中EKI计算效率的可行选择。
We propose a new regularisation strategy for the classical ensemble Kalman inversion (EKI) framework. The strategy consists of: (i) an adaptive choice for the regularisation parameter in the update formula in EKI, and (ii) criteria for the early stopping of the scheme. In contrast to existing approaches, our parameter choice does not rely on additional tuning parameters which often have severe effects on the efficiency of EKI. We motivate our approach using the interpretation of EKI as a Gaussian approximation in the Bayesian tempering setting for inverse problems. We show that our parameter choice controls the symmetrised Kulback-Leibler divergence between consecutive tempering measures. We further motivate our choice using a heuristic statistical discrepancy principle. We test our framework using electrical impedance tomography with the complete electrode model. Parameterisations of the unknown conductivity are employed which enable us to characterise both smooth or a discontinuous (piecewise-constant) fields. We show numerically that the proposed regularisation of EKI can produce efficient, robust and accurate estimates, even for the discontinuous case which tends to require larger ensembles and more iterations to converge. We compare the proposed technique with a standard method of choice and demonstrate that the proposed method is a viable choice to address computational efficiency of EKI in practical/operational settings.