论文标题
$ Q- $ $ euclidean空间中的球形表面
$q-$spherical surfaces in Euclidean space
论文作者
论文摘要
在本文中,我们将$ q $ spherical表面定义为包含欧几里得空间绝对圆锥的表面为$ q- $折叠曲线。特别注意具有最高点的单数点的表面。详细讨论了两个类别的表面,其中有一个和两个$ n- $折叠。我们研究它们的属性,提供其代数方程式,并通过程序{\ it Mathematica}进行可视化它们。
In this paper we define $q$-spherical surfaces as the surfaces that contain the absolute conic of the Euclidean space as a $q-$fold curve. Particular attention is paid to the surfaces with singular points of the highest order. Two classes of such surfaces, with one and two $n-$fold points, are discussed in detail. We study their properties, give their algebraic equations and visualize them with the program {\it Mathematica}.