论文标题
共同设计统计MIMO雷达和带内全双工多用户MIMO通信 - 第一部分:信号处理
Co-Designing Statistical MIMO Radar and In-band Full-Duplex Multi-User MIMO Communications -- Part I: Signal Processing
论文作者
论文摘要
我们考虑了一个光谱共享问题,其中统计(或广泛分布的)多输入多输出(MIMO)雷达和带内的全模具(IBFD)多用户MIMO(MU-MIMO)通信系统同时在同一频段内运行。 Prior works on joint MIMO-radar-MIMO-communications (MRMC) systems largely focus on either colocated MIMO radars, half-duplex MIMO communications, single-user scenarios, omit practical constraints (clutter, uplink [UL]/downlink [DL] transmit powers, UL/DL quality-of-service, and peak-to-average-power ratio), or MRMC co-existence使用单独的发送/接收单位。该论文的目的(第二部分和第三部分)是共同设计一个解决所有这些问题的MRMC框架。在本文中,我们提出了分布式IBFD MRMC的信号处理,其中雷达接收器旨在额外利用从雷达目标反射的下行链路通信信号。广泛的数值实验表明,与常规代码相比,我们的方法改善了雷达目标检测,并产生更高的可实现数据速率。以下伴侣论文(第二部分)描述了我们算法解决非凸设计问题的理论和过程。最终的伴侣论文(第二部分)考虑了多个目标的情况,并检查了MRMC系统的跟踪性能。
We consider a spectral sharing problem in which a statistical (or widely distributed) multiple-input multiple-output (MIMO) radar and an in-band full-duplex (IBFD) multi-user MIMO (MU-MIMO) communications system concurrently operate within the same frequency band. Prior works on joint MIMO-radar-MIMO-communications (MRMC) systems largely focus on either colocated MIMO radars, half-duplex MIMO communications, single-user scenarios, omit practical constraints (clutter, uplink [UL]/downlink [DL] transmit powers, UL/DL quality-of-service, and peak-to-average-power ratio), or MRMC co-existence that employs separate transmit/receive units. The purpose of this and companion papers (Part II and III) is to co-design an MRMC framework that addresses all of these issues. In this paper, we propose signal processing for a distributed IBFD MRMC, where radar receiver is designed to additionally exploit the downlink communications signals reflected from a radar target. Extensive numerical experiments show that our methods improve radar target detection over conventional codes and yield a higher achievable data rate than standard precoders. The following companion paper (Part II) describes the theory and procedure of our algorithm to solve the non-convex design problem. The final companion paper (Part II) considers the case of multiple targets and examines the tracking performance of our MRMC system.