论文标题

SVD分析进行深度旋转估计

An Analysis of SVD for Deep Rotation Estimation

论文作者

Levinson, Jake, Esteves, Carlos, Chen, Kefan, Snavely, Noah, Kanazawa, Angjoo, Rostamizadeh, Afshin, Makadia, Ameesh

论文摘要

通过SVD和密切相关的程序对称正交化是将矩阵投影到$ O(n)$或$ SO(N)$的众所周知的技术。这些工具长期以来一直用于计算机视觉中的应用,例如正交倾向,旋转平均或必需矩阵分解所解决的最佳3D对齐问题。尽管在不同的设置中具有效用,但SVD正交化作为产生旋转矩阵的过程,通常在深度学习模型中被忽略了,在深度学习模型中,偏好倾向于经典表示,例如单位四季度,欧拉角和轴 - 角,或者最近提出的方法。尽管3D旋转在计算机视觉和机器人技术中很重要,但仍然缺少单个普遍有效的表示形式。在这里,我们探讨了SVD正交化对神经网络中3D旋转的生存能力。我们提出了一个理论分析,该分析表明SVD是投射到旋转组上的自然选择。我们广泛的定量分析表明,在许多深度学习应用程序中,用SVD正交程序替换现有表示形式,涵盖了受监督和无监督的培训。

Symmetric orthogonalization via SVD, and closely related procedures, are well-known techniques for projecting matrices onto $O(n)$ or $SO(n)$. These tools have long been used for applications in computer vision, for example optimal 3D alignment problems solved by orthogonal Procrustes, rotation averaging, or Essential matrix decomposition. Despite its utility in different settings, SVD orthogonalization as a procedure for producing rotation matrices is typically overlooked in deep learning models, where the preferences tend toward classic representations like unit quaternions, Euler angles, and axis-angle, or more recently-introduced methods. Despite the importance of 3D rotations in computer vision and robotics, a single universally effective representation is still missing. Here, we explore the viability of SVD orthogonalization for 3D rotations in neural networks. We present a theoretical analysis that shows SVD is the natural choice for projecting onto the rotation group. Our extensive quantitative analysis shows simply replacing existing representations with the SVD orthogonalization procedure obtains state of the art performance in many deep learning applications covering both supervised and unsupervised training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源