论文标题

时空信件作为对比随机步行

Space-Time Correspondence as a Contrastive Random Walk

论文作者

Jabri, Allan, Owens, Andrew, Efros, Alexei A.

论文摘要

本文提出了一种简单的自我监督方法,用于学习从原始视频中学习视觉对应的表示形式。我们将对应关系作为链接的对应关系,以从视频构建的时空图中。在此图中,节点是从每个帧中采样的补丁,并且时间相邻的节点可以共享有向的边缘。我们学习一个表示形式,其中成对相似性定义了随机步行的过渡概率,因此将远程对应关系计算为沿图的步行。我们优化了表示形式,以沿着相似性路径放置高概率。通过循环一致性而没有监督的学习目标:目的是最大化沿着从框架的腔框中构造的图时返回初始节点的可能性。因此,单个路径级约束隐含地监督中间比较的链。当用作不适应的相似性度量时,学会的表示形式在涉及对象,语义部分和姿势的标签传播任务上的自我监管的最先进。此外,我们证明了一种我们称为边缘辍学的技术,以及在测试时间时进行的自我监督适应,进一步改善了以对象为中心的对应的转移。

This paper proposes a simple self-supervised approach for learning a representation for visual correspondence from raw video. We cast correspondence as prediction of links in a space-time graph constructed from video. In this graph, the nodes are patches sampled from each frame, and nodes adjacent in time can share a directed edge. We learn a representation in which pairwise similarity defines transition probability of a random walk, so that long-range correspondence is computed as a walk along the graph. We optimize the representation to place high probability along paths of similarity. Targets for learning are formed without supervision, by cycle-consistency: the objective is to maximize the likelihood of returning to the initial node when walking along a graph constructed from a palindrome of frames. Thus, a single path-level constraint implicitly supervises chains of intermediate comparisons. When used as a similarity metric without adaptation, the learned representation outperforms the self-supervised state-of-the-art on label propagation tasks involving objects, semantic parts, and pose. Moreover, we demonstrate that a technique we call edge dropout, as well as self-supervised adaptation at test-time, further improve transfer for object-centric correspondence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源