论文标题
扰动的sachdev-ye-kitaev模型:双曲机中的极化子
Perturbed Sachdev-Ye-Kitaev model: a polaron in the hyperbolic plane
论文作者
论文摘要
我们研究了Syk $ _4 $型号,其弱Syk $ _2 $ j $量级$γ$超出了先前考虑的最简单的扰动极限。对于扰动强度的中间值,$ j/n \ llγ\ ll j/\ sqrt {n} $,抑制了施瓦茨的波动,而SYK $ _4 $平均场解决方案仍然有效。超级订单相关函数在短时间间隔显示指数增长,最大lyapunov指数$2πt$,但其先前的量表为低温下的$ t $ $ t \ t \ leqγ$。
We study the SYK$_4$ model with a weak SYK$_2$ term of magnitude $Γ$ beyond the simplest perturbative limit considered previously. For intermediate values of the perturbation strength, $J/N \ll Γ\ll J/\sqrt{N}$, fluctuations of the Schwarzian mode are suppressed, and the SYK$_4$ mean-field solution remains valid beyond the timescale $t_0 \sim N/J$ up to $t_* \sim J/Γ^2$. Out-of-time-order correlation function displays at short time intervals exponential growth with maximal Lyapunov exponent $2πT$, but its prefactor scales as $T$ at low temperatures $T \leq Γ$.