论文标题

可解决的Baumslag-Solitar群体中的共轭曲率

Conjugation Curvature in Solvable Baumslag-Solitar Groups

论文作者

Taback, Jennifer, Walker, Alden

论文摘要

对于$ bs(1,n)= \ langle t,a |中的元素tat^{ - 1} = a^n \ rangle $以普通形式写成$ t^{ - u} a^vt^w $,带有$ u,w \ geq 0 $和$ v \ in \ mathbb {z} $,我们展示了代表元素的地理位词,代表元素的词长度,并给出了$ a $ a \ a \ a \ a的词长度。使用此单词长度公式,我们证明了由Bar Natan,Duchin和Kropholler定义的正密度的一组元素。

For an element in $BS(1,n) = \langle t,a | tat^{-1} = a^n \rangle$ written in the normal form $t^{-u}a^vt^w$ with $u,w \geq 0$ and $v \in \mathbb{Z}$, we exhibit a geodesic word representing the element and give a formula for its word length with respect to the generating set $\{t,a\}$. Using this word length formula, we prove that there are sets of elements of positive density of positive, negative and zero conjugation curvature, as defined by Bar Natan, Duchin and Kropholler.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源