论文标题
可靠网络连接的渗透阈值
Percolation Thresholds for Robust Network Connectivity
论文作者
论文摘要
通信网络,电网和运输网络都是网络的示例,即使在出现流动性,节点或边缘故障以及不同流量负载的情况下,即使在存在常规网络动态的情况下,它们的基础网络组件的可靠连接也取决于其基础网络组件的可靠连接性。渗透理论量化了局部控制参数的阈值,例如节点占用(分别删除)概率或边缘激活(分子,删除)概率(在下面),该概率(分别为spect。,下面)存在一个巨大的连接组件(GCC),一个连接的组成的组成的占据了占据的节点和活动性的范围的连接组件,其大小的大小是分数的。 GCC中的任何一对占用节点均通过至少一个由活动边缘和占用节点组成的路径连接。 GCC本身的仅存在并不能保证远程连接性将是稳健的,例如,由于网络动力学而引起的随机链接或节点故障。在本文中,我们探索了新的渗透阈值,这些阈值不仅可以保证跨越网络连接性,还可以保证稳健性。我们定义和分析了鲁棒网络连接的四个度量,探索它们的相互关系,并数值评估2D平方晶格的各自的可靠渗透阈值。
Communication networks, power grids, and transportation networks are all examples of networks whose performance depends on reliable connectivity of their underlying network components even in the presence of usual network dynamics due to mobility, node or edge failures, and varying traffic loads. Percolation theory quantifies the threshold value of a local control parameter such as a node occupation (resp., deletion) probability or an edge activation (resp., removal) probability above (resp., below) which there exists a giant connected component (GCC), a connected component comprising of a number of occupied nodes and active edges whose size is proportional to the size of the network itself. Any pair of occupied nodes in the GCC is connected via at least one path comprised of active edges and occupied nodes. The mere existence of the GCC itself does not guarantee that the long-range connectivity would be robust, e.g., to random link or node failures due to network dynamics. In this paper, we explore new percolation thresholds that guarantee not only spanning network connectivity, but also robustness. We define and analyze four measures of robust network connectivity, explore their interrelationships, and numerically evaluate the respective robust percolation thresholds for the 2D square lattice.