论文标题
时空序列预测,并通过点过程和自组织决策树
Spatio-temporal Sequence Prediction with Point Processes and Self-organizing Decision Trees
论文作者
论文摘要
我们研究了时空预测问题,并引入了一种新型的基于点过程的预测算法。由于其关键的现实生活应用,例如犯罪,地震和社交事件预测,因此在机器学习文献中对时空预测进行了广泛的研究。尽管进行了这些详尽的研究,但尚未完全探索应用领域固有的特定问题。在这里,我们解决了密集和稀疏分布的序列上的非平稳时空预测问题。我们引入了一种概率方法,该方法将空间结构域分配到子区域中,并与相互作用的点过程中的事件到达。我们的算法可以通过基于梯度的优化程序共同学习这些区域之间的空间分区和相互作用。最后,我们在模拟数据和两个现实生活数据集上演示了算法的性能。我们将我们的方法与基线和最先进的基于深度学习的方法进行了比较,我们可以在其中取得重大的绩效改进。此外,我们还通过经验结果展示了使用不同参数对整体绩效的效果,并解释了选择参数的过程。
We study the spatio-temporal prediction problem and introduce a novel point-process-based prediction algorithm. Spatio-temporal prediction is extensively studied in Machine Learning literature due to its critical real-life applications such as crime, earthquake, and social event prediction. Despite these thorough studies, specific problems inherent to the application domain are not yet fully explored. Here, we address the non-stationary spatio-temporal prediction problem on both densely and sparsely distributed sequences. We introduce a probabilistic approach that partitions the spatial domain into subregions and models the event arrivals in each region with interacting point-processes. Our algorithm can jointly learn the spatial partitioning and the interaction between these regions through a gradient-based optimization procedure. Finally, we demonstrate the performance of our algorithm on both simulated data and two real-life datasets. We compare our approach with baseline and state-of-the-art deep learning-based approaches, where we achieve significant performance improvements. Moreover, we also show the effect of using different parameters on the overall performance through empirical results and explain the procedure for choosing the parameters.