论文标题
Neumann-Poincaré操作员在薄域中的光谱结构在二维
Spectral structure of the Neumann--Poincaré operator on thin domains in two dimensions
论文作者
论文摘要
我们考虑了Neumann-Poincaré运算符的频谱结构,这些操作员在两个维度的矩形形状的薄域的边界上定义。我们证明,随着域的长宽比倾向于$ \ infty $,或者等效地,随着域变得越来越薄,Neumann的光谱 - poincaré运算符在间隔$ [-1/2,1/2] $中密集分布。
We consider the spectral structure of the Neumann--Poincaré operators defined on the boundaries of thin domains of rectangle shape in two dimensions. We prove that as the aspect ratio of the domains tends to $\infty$, or equivalently, as the domains get thinner, the spectra of the Neumann--Poincaré operators are densely distributed in the interval $[-1/2,1/2]$.