论文标题
未来时间宇宙的粘性暗能量的热力学
Thermodynamics of viscous dark energy for the late future time universe
论文作者
论文摘要
在这项工作中,我们在两种不同的情况下探索了未来时间宇宙的暗能量的热力学方面:作为具有恒定和可变状态参数方程的完美流体;正如耗散流体所描述的,在ECKART理论的框架和完整的以色列 - 史图尔特理论的框架中,状态的正压方程式具有较大的粘度。我们探索宇宙学的解决方案,以实现平坦,同质和各向同性的宇宙。当黑暗能量主导宇宙进化时,我们假设未来的时间行为很晚。当将其建模为具有状态动态方程式的完美流体时,$ p = w(a)ρ$,暗能量具有能量密度,温度和熵的定义良好,有趣的结果是,即使是动态的,也没有熵产生。对于耗散的暗能量,在ECKART理论中,研究了两种情况:$ξ= const。$和$ξ=(β/\ sqrt {3}))ρ^{1/2} $;发现熵在第一种情况下呈指数增长,并且是第二个情况的幂律。在以色列 - 斯图尔特理论中,我们考虑$ξ=ξ_0ρ{1/2} $和放松时间$τ=ξ/ρ$;通过幂律熵获得了分析大的RIP解决方案。在所有情况下,都获得了温度和能量密度之间的幂律关系。为了维持在所研究的不同暗能量模型中,发现了状态方程的热力学理论约束的第二定律。 $ W <-1 $的正压深色液体在热力学上很难支撑,但是在某些情况下,散装粘度的总体效果允许没有热力学异常的幻影状态。
In this work we explore the thermodynamic aspects of dark energy for late future time universe in two different scenarios: as a perfect fluid with constant and variable equation of state parameter; and as dissipative fluid described by a barotropic equation of state with bulk viscosity in the framework of the Eckart theory and the full Israel-Stewart theory. We explore cosmological solutions for a flat, homogeneous and isotropic universe; and we assume the late future time behavior when the dark energy dominates the cosmic evolution. When modeled as a perfect fluid with a dynamical equation of state, $p=w(a)ρ$, the dark energy has an energy density, temperature and entropy well defined and an interesting result is that there is no entropy production even though been dynamical. For dissipative dark energy, in the Eckart theory two cases are studied: $ξ=const.$ and $ξ=(β/\sqrt{3}) ρ^{1/2}$; it is found that the entropy grows exponentially for the first case and as a power-law for the second. In the Israel-Stewart theory we consider a $ξ=ξ_0 ρ^{1/2}$ and a relaxation time $τ= ξ/ρ$; an analytical Big Rip solution is obtained with a power-law entropy. In all cases a power-law relation between temperature and energy density is obtained. In order to maintain the second law of thermodynamics theoretical constraints for the equation of state are found in the different dark energy models studied. A barotropic dark fluid with $w<-1$ is thermodynamically difficult to support, but the overall effect of bulk viscosity in certain cases allows a phantom regime without thermodynamic anomalies.