论文标题

使用公共临床试验报告评估观察性研究方法

Using public clinical trial reports to evaluate observational study methods

论文作者

Steinberg, Ethan, Ignatiadis, Nikolaos, Yadlowsky, Steve, Xu, Yizhe, Shah, Nigam H.

论文摘要

观察性研究对于估计各种医疗干预措施的影响很有价值,但众所周知,很难评估,因为观察性研究中使用的方法需要许多无法测试的假设。缺乏可验证性使得很难比较不同的观察性研究方法并信任任何特定的观察性研究的结果。在这项工作中,我们提出了试验,这是一种基于临床试验报告中提出的基础真相的观察性研究方法的新方法。我们将试验报告处理为已知的因果关系的收集,然后可以用来估计各种观察性研究方法的精确和回忆。然后,我们使用tryverify来评估多种观察性研究方法,以确定来自大型国家保险索赔数据集的已知因果关系的能力。我们发现,反向倾向得分加权是准确再现已知因果关系并超过其他观察性研究方法的有效方法。预审可自由使用,以评估观察性研究方法。

Observational studies are valuable for estimating the effects of various medical interventions, but are notoriously difficult to evaluate because the methods used in observational studies require many untestable assumptions. This lack of verifiability makes it difficult both to compare different observational study methods and to trust the results of any particular observational study. In this work, we propose TrialVerify, a new approach for evaluating observational study methods based on ground truth sourced from clinical trial reports. We process trial reports into a denoised collection of known causal relationships that can then be used to estimate the precision and recall of various observational study methods. We then use TrialVerify to evaluate multiple observational study methods in terms of their ability to identify the known causal relationships from a large national insurance claims dataset. We found that inverse propensity score weighting is an effective approach for accurately reproducing known causal relationships and outperforms other observational study methods. TrialVerify is made freely available for others to evaluate observational study methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源