论文标题
机器学习真正的判别基因座
Machine learning the real discriminant locus
论文作者
论文摘要
多项式方程的参数化系统在科学和工程中的许多应用中都具有描述动态系统的均衡,链接满足设计约束的链接以及计算机视觉中的场景重建。由于不同的参数值可以具有不同数量的实际解决方案,因此参数空间被分解为边界形成真实判别基因座的区域。本文认为将实际判别基因座定位为机器学习中的监督分类问题,目的是确定参数空间上的分类边界,其中类是实际解决方案的数量。对于多维参数空间,本文提出了一种新型的采样方法,该方法仔细采样了参数空间。在每个样本点,同型连续性用于获取相应多项式系统的实际解数。包括最近的邻居和深度学习在内的机器学习技术可有效地近似实际的判别基因座。学习了真正的判别基因座的一种应用是开发一种真实的同型方法,该方法仅跟踪真实的解决方案路径,与传统方法不同,该方法跟踪所有〜复杂〜解决方案路径。示例表明,所提出的方法可以有效地近似复杂的解决方案边界,例如由库拉马托模型的平衡引起的。
Parameterized systems of polynomial equations arise in many applications in science and engineering with the real solutions describing, for example, equilibria of a dynamical system, linkages satisfying design constraints, and scene reconstruction in computer vision. Since different parameter values can have a different number of real solutions, the parameter space is decomposed into regions whose boundary forms the real discriminant locus. This article views locating the real discriminant locus as a supervised classification problem in machine learning where the goal is to determine classification boundaries over the parameter space, with the classes being the number of real solutions. For multidimensional parameter spaces, this article presents a novel sampling method which carefully samples the parameter space. At each sample point, homotopy continuation is used to obtain the number of real solutions to the corresponding polynomial system. Machine learning techniques including nearest neighbor and deep learning are used to efficiently approximate the real discriminant locus. One application of having learned the real discriminant locus is to develop a real homotopy method that only tracks the real solution paths unlike traditional methods which track all~complex~solution~paths. Examples show that the proposed approach can efficiently approximate complicated solution boundaries such as those arising from the equilibria of the Kuramoto model.