论文标题

非线性开放量子系统中的非平衡稳态和热传输:随机影响动作和功能扰动分析

Nonequilibrium Steady State and Heat Transport in Nonlinear Open Quantum Systems: Stochastic Influence Action and Functional Perturbative Analysis

论文作者

Yang, Jing, Hsiang, Jen-Tsung, Jordan, Andrew N., Hu, B. L.

论文摘要

在本文中,我们表明,通过遵循其非平衡动力学和扰动分析,在较弱的非线性量子系统中存在非平衡稳态(NESS)。在这里,我们考虑了一个振荡器链,该振荡器链中包含Fermi-Pasta-ulam-tsingou(FPUT)模型中的三型非谐调性:立方$α$ - 和四分之一的$β$β$ type最近的启动器相互作用以及SITE(固定)(固定的)Klein-Gordon(KG)(KG)(kg)QUARTIC自我interaction。假设非线性较弱,我们引入了一种随机影响动作方法来解决问题,并在链的不同关头中获得能量流。此处获得的形式结果可用于弱非线性量子系统中的量子运输问题。对于$α$ -Type anharmonicity,我们观察到,一阶校正在我们考虑的配置中没有在热传输中起任何作用。对于kg和$β$ types的非谐度,我们明确地算出两个弱非线性耦合振荡器的情况,结果可扩展到任何数量的振荡器。我们通过耦合的振荡器检查了从一个热浴到另一个热浴的晚期能量流,并表明能量流的零和一阶贡献在后期的时间持续不断,这表明了迟到的夜间NESS在非线性中的第一顺序。我们的扰动计算提供了非线性开放量子系统非线性强度的度量,这可能有助于控制与线性转运或接近线性转运的介观热传输。此外,我们的结果还为模拟热传输的数值挑战提供了基准。我们的设置和预测可以通过在大约约瑟夫森能源(Josephson Energy)限制的一系列约瑟夫森(Josephson)连接中的热流和电路平台的限制来实现和验证。

In this paper, we show that a nonequilibrium steady state (NESS) exists at late times in open quantum systems with weak nonlinearity by following its nonequilibrium dynamics with a perturbative analysis. Here we consider an oscillator chain containing three-types of anharmonicity in the Fermi-Pasta-Ulam-Tsingou (FPUT) model: cubic $α$- and quartic $β$-type nearest-oscillator interactions and the on-site (pinned) Klein-Gordon (KG) quartic self-interaction. Assuming weak nonlinearity, we introduce a stochastic influence action approach to the problem and obtain the energy flow in different junctures of the chain. The formal results obtained here can be used for quantum transport problems in weakly nonlinear quantum systems. For $α$-type anharmonicity, we observe that the first-order corrections do not play any role in the thermal transport in the NESS of the configuration we considered. For KG and $β$-types anharmonicity, we work out explicitly the case of two weakly nonlinearly coupled oscillators, with results scalable to any number of oscillators. We examine the late-time energy flows from one thermal bath to the other via the coupled oscillators, and show that both the zeroth- and the first-order contributions of the energy flow become constant in time at late times, signaling the existence of a late-time NESS to first order in nonlinearity. Our perturbative calculations provide a measure of the strength of nonlinearity for nonlinear open quantum systems, which may help control the mesoscopic heat transport distinct from or close to linear transport. Furthermore, our results also give a benchmark for the numerical challenge of simulating heat transport. Our setup and predictions can be implemented and verified by investigating heat flow in an array of Josephson junctions in the limit of large Josephson energy with the platform of circuit QED.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源