论文标题

向量 - 矩阵向量查询,用于求解线性代数,统计和图形问题

Vector-Matrix-Vector Queries for Solving Linear Algebra, Statistics, and Graph Problems

论文作者

Rashtchian, Cyrus, Woodruff, David P., Zhu, Hanlin

论文摘要

我们考虑通过矢量 - 马trix-vector查询学习矩阵的总体问题。这些查询提供了$ \ boldsymbol {u}^{\ mathrm {\ mathrm {t}} \ boldsymbol {m} \ boldsymbol {m} \ boldsymbol {v} $在固定字段$ \ mathbb {f}上,用于指定的Vectors $ \ boldsymbol \ Mathbb {f}^n $。为了激励这些查询,我们观察到它们概括了许多先前研究的模型,例如独立的设置查询,剪切查询和标准图查询。他们还专门研究了最近研究的矩阵矢量查询模型。我们的工作是探索性和广泛的,我们为各种问题,跨越线性代数,统计和图形提供了新的上和下限。我们的许多结果几乎很紧,我们使用线性代数,随机算法和通信复杂性的多种技术。

We consider the general problem of learning about a matrix through vector-matrix-vector queries. These queries provide the value of $\boldsymbol{u}^{\mathrm{T}}\boldsymbol{M}\boldsymbol{v}$ over a fixed field $\mathbb{F}$ for a specified pair of vectors $\boldsymbol{u},\boldsymbol{v} \in \mathbb{F}^n$. To motivate these queries, we observe that they generalize many previously studied models, such as independent set queries, cut queries, and standard graph queries. They also specialize the recently studied matrix-vector query model. Our work is exploratory and broad, and we provide new upper and lower bounds for a wide variety of problems, spanning linear algebra, statistics, and graphs. Many of our results are nearly tight, and we use diverse techniques from linear algebra, randomized algorithms, and communication complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源