论文标题
XMM群集调查:簇中3.5 KEV功能的新证据与暗物质起源不一致
The XMM Cluster Survey: new evidence for the 3.5 keV feature in clusters is inconsistent with a dark matter origin
论文作者
论文摘要
有几份报道说,在天体物理系统中发现了$ \ simeq $ 3.5 keV的X射线排放过量的发现。对这种过剩的一种解释是无菌中微子暗物质的衰减。迄今为止,最具影响力的研究分析了XMM-Newton卫星观察到的73个簇。我们探索了$ \ simeq $ 3.5 keV多余的证据,XMM-PN光谱为117 Redmapper Galaxy簇(0.1美元<z <0.6 $)。在对单个光谱的分析中,我们确定了三个助焊剂$ \ simeq $ 3.5 kev的系统。在一个情况下(XCS J0003.3+0204),这一多余可能是由离散的发射线造成的。这些系统都不是我们的样本中最深的物质。我们将剩余的114个簇分组为四个温度($ t _ {\ rm x} $)垃圾箱,以搜索$ \ simeq $ 3.5 kev flux flux过量的增加,并使用$ t _ {\ rm x} $ - 可靠的halo块词器。但是,我们没有发现任何$ t _ {\ rm x} $ bins中的$ \ simeq $ 3.5 kev的通量过量的证据。为了最大程度地提高对潜在的弱暗衰减功能的敏感性,$ \ simeq $ 3.5 kev,我们共同拟合114个簇。同样,在$ \ simeq $ 3.5 keV中找不到显着的过剩。我们估计未发现的排放线的上限为$ \ simeq $ 3.5 kev为$ 2.41 \ times 10^{ - 6} $ photons cm $^{ - 2} $ s $ s $ s $^{ - 1} $,对应于$ \ sin^2(2θ)= 4.4 \ times times times 10^$ sell plower的混合角度。我们得出的结论是,$ \ simeq $ 3.5 keV的助剂过剩并不是簇中无处不在的功能,因此不太可能源自无菌中微子暗物质衰减。
There have been several reports of a detection of an unexplained excess of X-ray emission at $\simeq$ 3.5 keV in astrophysical systems. One interpretation of this excess is the decay of sterile neutrino dark matter. The most influential study to date analysed 73 clusters observed by the XMM-Newton satellite. We explore evidence for a $\simeq$ 3.5 keV excess in the XMM-PN spectra of 117 redMaPPer galaxy clusters ($0.1 < z < 0.6$). In our analysis of individual spectra, we identify three systems with an excess of flux at $\simeq$ 3.5 keV. In one case (XCS J0003.3+0204) this excess may result from a discrete emission line. None of these systems are the most dark matter dominated in our sample. We group the remaining 114 clusters into four temperature ($T_{\rm X}$) bins to search for an increase in $\simeq$ 3.5 keV flux excess with $T_{\rm X}$ - a reliable tracer of halo mass. However, we do not find evidence of a significant excess in flux at $\simeq$ 3.5 keV in any $T_{\rm X}$ bins. To maximise sensitivity to a potentially weak dark matter decay feature at $\simeq$ 3.5 keV, we jointly fit 114 clusters. Again, no significant excess is found at $\simeq$ 3.5 keV. We estimate the upper limit of an undetected emission line at $\simeq$ 3.5 keV to be $2.41 \times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$, corresponding to a mixing angle of $\sin^2(2θ)=4.4 \times 10^{-11}$, lower than previous estimates from cluster studies. We conclude that a flux excess at $\simeq$ 3.5 keV is not a ubiquitous feature in clusters and therefore unlikely to originate from sterile neutrino dark matter decay.