论文标题
宇宙潮汐场的分析光环模型
Analytical halo models of cosmic tidal fields
论文作者
论文摘要
暗物质光环的非线性宇宙网络环境在塑造其增长和进化方面起着重要作用,并且可能也影响着存在的星系。我们开发了一种分析(光晕模型)形式主义,以描述各向异性卤代中心密度分布的潮汐场,其特征在于卤代潮汐张量$ \ langle t_ {ij} \ langle(ij} \ rangle(<r)(<r)$ rane(<r)$ sim $ r \ r \ sim4r rail} $ r _ {\ rm vir} $。我们专注于轴对称各向异性,这使我们能够探索(子)光环配置的简单,直观的玩具模型,这些模型示例了宇宙网络中一些最有趣的各向异性。在将其描述为高斯混合物之后,我们围绕球形Navarro-frenk-white(NFW)轮廓建立了模型,从而导致了“潮汐向向异性”标量$α(<4r _ {\ rm vir})的几乎完全分析表达式。我们的轴对称示例包括(i)圆柱形细丝轴处的球形光环,(ii)球形宿主晕中心的中心卫星和(iii)轴对称光环。使用这些,我们展示了几个有趣的结果。例如,对于任何$ r $,纯圆柱形灯丝的轴上的潮汐张量得到$α^{\ rm(fil)}(<r)}(<r)= 1/2 $。此外,对于$α(<4r _ {\ rm vir,sat})$,用于半径$ r _ {\ rm vir,sat} $作为其以主机为中心距离的函数,是对主机环境中卫星动态质量损失的敏感探测。最后,我们讨论了形式主义的许多潜在有趣的扩展和应用,这些扩展和应用可以加深我们对宇宙网络多规模现象学的理解。
The non-linear cosmic web environment of dark matter haloes plays a major role in shaping their growth and evolution, and potentially also affects the galaxies that reside in them. We develop an analytical (halo model) formalism to describe the tidal field of anisotropic halo-centric density distributions, as characterised by the halo-centric tidal tensor $\langle T_{ij} \rangle(<R)$ spherically averaged on scale $R\sim4R_{\rm vir}$ for haloes of virial radius $R_{\rm vir}$. We focus on axisymmetric anisotropies, which allows us to explore simple and intuitive toy models of (sub)halo configurations that exemplify some of the most interesting anisotropies in the cosmic web. We build our models around the spherical Navarro-Frenk-White (NFW) profile after describing it as a Gaussian mixture, which leads to almost fully analytical expressions for the `tidal anisotropy' scalar $α(<4R_{\rm vir})$ extracted from the tidal tensor. Our axisymmetric examples include (i) a spherical halo at the axis of a cylindrical filament, (ii) an off-centred satellite in a spherical host halo and (iii) an axisymmetric halo. Using these, we demonstrate several interesting results. For example, the tidal tensor at the axis of a pure cylindrical filament gives $α^{\rm (fil)}(<R)=1/2$ exactly, for any $R$. Also, $α(<4R_{\rm vir,sat})$ for a satellite of radius $R_{\rm vir,sat}$ as a function of its host-centric distance is a sensitive probe of dynamical mass loss of the satellite in its host environment. Finally, we discuss a number of potentially interesting extensions and applications of our formalism that can deepen our understanding of the multi-scale phenomenology of the cosmic web.