论文标题
多路径神经网络中的特征依赖性跨连接
Feature-Dependent Cross-Connections in Multi-Path Neural Networks
论文作者
论文摘要
从数据集中学习一项特定任务的样本,其中源自不同环境,这是具有挑战性的,通常通过加深或扩大标准神经网络来解决。与传统的网络扩大相反,多路径体系结构将复杂性的二次增量限制为线性尺度。但是,现有的多列/路径网络或模型结合方法不考虑任何并行资源的特征分配,因此倾向于学习冗余功能。在多路径网络中给出了一层,如果我们限制了每个路径以学习上下文特定的特征集,并引入机制以智能地将传入的特征地图分配到此类路径中,则每条路径都可以在某个上下文中专业,从而降低冗余性并提高提取功能的质量。最终导致平行资源的使用更优化。为此,我们建议在连续层中的特征图平行集之间插入特征依赖性的交叉连接。这些交叉连接的加权系数是根据特定层的输入特征计算得出的。与在小型和大型数据集中使用的传统和最新方法相比,我们的多路径网络在相似的复杂性上显示出相似的复杂性图像识别精度的提高。
Learning a particular task from a dataset, samples in which originate from diverse contexts, is challenging, and usually addressed by deepening or widening standard neural networks. As opposed to conventional network widening, multi-path architectures restrict the quadratic increment of complexity to a linear scale. However, existing multi-column/path networks or model ensembling methods do not consider any feature-dependent allocation of parallel resources, and therefore, tend to learn redundant features. Given a layer in a multi-path network, if we restrict each path to learn a context-specific set of features and introduce a mechanism to intelligently allocate incoming feature maps to such paths, each path can specialize in a certain context, reducing the redundancy and improving the quality of extracted features. This eventually leads to better-optimized usage of parallel resources. To do this, we propose inserting feature-dependent cross-connections between parallel sets of feature maps in successive layers. The weighting coefficients of these cross-connections are computed from the input features of the particular layer. Our multi-path networks show improved image recognition accuracy at a similar complexity compared to conventional and state-of-the-art methods for deepening, widening and adaptive feature extracting, in both small and large scale datasets.