论文标题

符号表面和固定基因座的模仿空间的固定基因座类别

Equivariant categories of symplectic surfaces and fixed loci of Bridgeland moduli spaces

论文作者

Beckmann, Thorsten, Oberdieck, Georg

论文摘要

给定有限的组$ g $在流畅的投射品种$ x $的派生类别中的作用,我们将$ d^b(\ mathrm {coh}(x)$中稳定对象的诱导$ g $ action的固定基因座与稳定对象的稳定对象的固定位置与ecoriant of ecrovariant类别中的Moduli space的稳定对象相关联。 $ d^b(\ mathrm {coh}(x))_ g $。作为应用程序,我们获得了在符号表面的派生类别上的符号动作类别的标准,以等同于表面的派生类别。这概括了派生的McKay对应关系,并产生了一个通用框架,用于描述在符号表面上稳定对象的模量空间上的固定基因座。

Given an action of a finite group $G$ on the derived category of a smooth projective variety $X$ we relate the fixed loci of the induced $G$-action on moduli spaces of stable objects in $D^b(\mathrm{Coh}(X))$ with moduli spaces of stable objects in the equivariant category $D^b(\mathrm{Coh}(X))_G$. As an application we obtain a criterion for the equivariant category of a symplectic action on the derived category of a symplectic surface to be equivalent to the derived category of a surface. This generalizes the derived McKay correspondence, and yields a general framework for describing fixed loci of symplectic group actions on moduli spaces of stable objects on symplectic surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源