论文标题
紧凑的Kähler歧管具有准阳性第二Chern-Chern-Ricci曲率
Compact Kähler manifolds with quasi-positive second Chern-Ricci curvature
论文作者
论文摘要
令$ x $为紧凑的kähler歧管。我们证明,如果$ x $承认带有准阳性的第二个Chern-ricci曲率$ \ mathrm {ric}^{(2)}(ω)$的光滑的Hermitian公制$ω$,则$ x $是投影性和合理连接的。特别是,$ x $仅连接。
Let $X$ be a compact Kähler manifold. We prove that if $X$ admits a smooth Hermitian metric $ω$ with quasi-positive second Chern-Ricci curvature $\mathrm{Ric}^{(2)}(ω)$, then $X$ is projective and rationally connected. In particular, $X$ is simply connected.