论文标题

深度学习工作负载的有效弹性缩放

Effective Elastic Scaling of Deep Learning Workloads

论文作者

Saxena, Vaibhav, Jayaram, K. R., Basu, Saurav, Sabharwal, Yogish, Verma, Ashish

论文摘要

在学术界,政府和行业中,深度学习(DL)的使用越来越多,反过来又导致了本地和云托管深度学习平台的普及,这些平台的目标是使组织能够有效地利用昂贵的资源,并以公平有效的方式在多个团队中共享上述资源。 在本文中,我们检查了大规模培训平台上深度学习(DL)工作的弹性缩放(DL)工作,并提出了用于DL培训工作的新型资源分配策略,从而改善了工作时间的运行时间性能以及增加集群利用率。我们首先分析DL工作负载,并利用DL作业可以使用一系列批量大小运行而不会影响其最终准确性的事实。我们制定了一个优化问题,该问题根据其在多个节点运行时,根据其缩放效率探讨了对单个DL作业的动态批处理大小分配。我们设计了一个基于动态编程的快速优化器,以实时解决此问题,以确定可以扩大/向下扩展的作业,并在Autoscaler中使用此优化器,以动态地更改分配的资源和单个DL作业的批次大小。 我们从经验上证明,与强大的基线算法相比,我们的弹性缩放算法最多可以完成$ \ 2 \ times $的作业,该算法也可以扩展GPU的数量,但不会改变批次大小。我们还证明,使用算法的平均完成时间高达$ \ $ \ 10 \ times $ $ $ $。

The increased use of deep learning (DL) in academia, government and industry has, in turn, led to the popularity of on-premise and cloud-hosted deep learning platforms, whose goals are to enable organizations utilize expensive resources effectively, and to share said resources among multiple teams in a fair and effective manner. In this paper, we examine the elastic scaling of Deep Learning (DL) jobs over large-scale training platforms and propose a novel resource allocation strategy for DL training jobs, resulting in improved job run time performance as well as increased cluster utilization. We begin by analyzing DL workloads and exploit the fact that DL jobs can be run with a range of batch sizes without affecting their final accuracy. We formulate an optimization problem that explores a dynamic batch size allocation to individual DL jobs based on their scaling efficiency, when running on multiple nodes. We design a fast dynamic programming based optimizer to solve this problem in real-time to determine jobs that can be scaled up/down, and use this optimizer in an autoscaler to dynamically change the allocated resources and batch sizes of individual DL jobs. We demonstrate empirically that our elastic scaling algorithm can complete up to $\approx 2 \times$ as many jobs as compared to a strong baseline algorithm that also scales the number of GPUs but does not change the batch size. We also demonstrate that the average completion time with our algorithm is up to $\approx 10 \times$ faster than that of the baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源