论文标题
反馈图注意力图像增强的卷积网络
Feedback Graph Attention Convolutional Network for Medical Image Enhancement
论文作者
论文摘要
伪影,模糊和噪声是在获取过程中降低MRI图像的常见畸变,并且已经证明了深层神经网络可以帮助改善图像质量。为了很好地利用全球结构信息和纹理细节,我们提出了一个新型的生物医学图像增强网络,名为“反馈图”注意卷积网络(FB-GACN)。作为关键创新,我们通过从图像子区域构建图形网络来考虑图像的全局结构,而图像子区域我们认为是节点特征,并根据其相似性将其非安排链接。所提出的模型由三个主要部分组成:1)平行图相似性分支和内容分支,其中图相似性分支旨在利用低分辨率特征空间中不同图像子区域的相似性和对称性,并为内容分支提供了其他先验,以增强纹理细节。 2)具有复发结构的反馈机制,可通过处理反馈连接来完善具有高级信息的低级表示,并生成强大的高级纹理细节。 3)通过使用从图形相似性分支获得的估计的子区域相关先验来删除伪影并恢复超分辨率图像的重建。我们在两个图像增强任务上评估我们的方法:i)扩散MRI的交叉协议超级分辨率; ii)伪影去除天赋MR图像。实验结果表明,所提出的算法的表现优于最新方法。
Artifacts, blur and noise are the common distortions degrading MRI images during the acquisition process, and deep neural networks have been demonstrated to help in improving image quality. To well exploit global structural information and texture details, we propose a novel biomedical image enhancement network, named Feedback Graph Attention Convolutional Network (FB-GACN). As a key innovation, we consider the global structure of an image by building a graph network from image sub-regions that we consider to be node features, linking them non-locally according to their similarity. The proposed model consists of three main parts: 1) The parallel graph similarity branch and content branch, where the graph similarity branch aims at exploiting the similarity and symmetry across different image sub-regions in low-resolution feature space and provides additional priors for the content branch to enhance texture details. 2) A feedback mechanism with a recurrent structure to refine low-level representations with high-level information and generate powerful high-level texture details by handling the feedback connections. 3) A reconstruction to remove the artifacts and recover super-resolution images by using the estimated sub-region correlation priors obtained from the graph similarity branch. We evaluate our method on two image enhancement tasks: i) cross-protocol super resolution of diffusion MRI; ii) artifact removal of FLAIR MR images. Experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art methods.