论文标题

基于神经网络的深度距离估计声学传感器网络中的几何校准

Deep Neural Network based Distance Estimation for Geometry Calibration in Acoustic Sensor Networks

论文作者

Gburrek, Tobias, Schmalenstroeer, Joerg, Brendel, Andreas, Kellermann, Walter, Haeb-Umbach, Reinhold

论文摘要

我们提出了一种基于深神网络(基于DNN的)距离估计的方法,用于支持无线声学传感器网络中的几何校准任务。来自声学信号的信号扩散信息通过相干与扩散功率比聚集,以获得与距离相关的特征,该特征通过DNN映射到源与微粒距离估计。然后将这些信息与从紧凑型麦克风阵列中的到达方向估计相结合,以推断传感器网络的几何形状。与许多其他几何校准方法不同,所提出的方案确实只要求传感器节点的采样时钟大致同步。在模拟中,我们表明,提出的基于DNN的距离估计器将概括为看不见的声学环境,并获得了传感器节点位置的精确估计。

We present an approach to deep neural network based (DNN-based) distance estimation in reverberant rooms for supporting geometry calibration tasks in wireless acoustic sensor networks. Signal diffuseness information from acoustic signals is aggregated via the coherent-to-diffuse power ratio to obtain a distance-related feature, which is mapped to a source-to-microphone distance estimate by means of a DNN. This information is then combined with direction-of-arrival estimates from compact microphone arrays to infer the geometry of the sensor network. Unlike many other approaches to geometry calibration, the proposed scheme does only require that the sampling clocks of the sensor nodes are roughly synchronized. In simulations we show that the proposed DNN-based distance estimator generalizes to unseen acoustic environments and that precise estimates of the sensor node positions are obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源