论文标题
$ a_n^2 $ -polyhedra的自图稳定同型类别的环
The ring of stable homotopy classes of self-maps of $A_n^2$-polyhedra
论文作者
论文摘要
我们将戒指的真实性问题提出为$ \ {x,x \} $稳定的同型稳定均值类别的自图$ x $。通过专注于$ a_n^2 $ -polyhedra,我们表明,阿贝尔群的三个内态戒指的直接总和必须是免费的,可以实现为$ \ {x,x,x \} $ modulo acyclic maps。我们还表明,在有限的类型$ a_n^2 $ -polyhedra的设置中,$ \ mathbb {f} _p^3 $,对于$ p $ ainy prime。
We raise the problem of realisability of rings as $\{X,X\}$ the ring of stable homotopy classes of self-maps of a space $X$. By focusing on $A_n^2$-polyhedra, we show that the direct sum of three endomorphism rings of abelian groups, one of which must be free, is realisable as $\{X,X\}$ modulo the acyclic maps. We also show that $\mathbb{F}_p^3$ is not realisable in the setting of finite type $A_n^2$-polyhedra, for $p$ any prime.