论文标题
双重相似性转化耦合群集理论的稳定性分析
Stability analysis of a double similarity transformed coupled cluster theory
论文作者
论文摘要
在本文中,我们分析了与双重相似性转化耦合群集理论相关的迭代方案相关的时间序列。解决基态schr {Ö} dinger方程的耦合迭代方案被铸造为多元时间散射图,该解决方案显示了通用Feigenbaum动力学。使用复发分析,可以证明迭代过程的动力学是由一个小的集群操作员的子组决定的,主要是涉及化学活性轨道的群集,而所有其他具有较小幅度的集群算子则均予奴役。使用协同功能,我们将指出如何适当利用主奴隶动力学,以在大量降低的维度中开发出一种新型的耦合群集算法。
In this paper, we have analysed the time series associated with the iterative scheme of a double similarity transformed Coupled Cluster theory. The coupled iterative scheme to solve the ground state Schr{ö}dinger equation is cast as a multivariate time-discrete map, the solutions show the universal Feigenbaum dynamics. Using recurrence analysis, it is shown that the dynamics of the iterative process is dictated by a small subgroup of cluster operators, mostly those involving chemically active orbitals, whereas all other cluster operators with smaller amplitudes are enslaved. Using Synergetics, we will indicate how the master-slave dynamics can suitably be exploited to develop a novel coupled-cluster algorithm in a much-reduced dimension.