论文标题
碳的准确且可转移的机器学习潜力
An Accurate and Transferable Machine Learning Potential for Carbon
论文作者
论文摘要
我们提出了使用高斯近似电势(GAP)方法构建的碳原子模拟的精确机器学习(ML)模型。该电势称为GAP-20,描述了散装晶体和无定形相,晶体表面和缺陷结构的特性,其精度接近直接从头算模拟的精度,但成本大大降低。我们结合了无定形碳和石墨烯的结构数据库,例如,通过添加合适的配置,例如,对于石墨烯和其他纳米结构中的缺陷,它们可以大大扩展。最终电势适用于使用OPTB88-VDW密度功能理论(DFT)功能计算的参考数据。因此,隐式包括在内,对于描述多层碳质材料至关重要的色散相互作用。我们还使用半分析两体项来考虑远程色散相互作用,并表明可以通过优化多体平滑原子位置(SOAP)描述符来获得改进的模型。我们严格地测试了晶格参数,键长,地层能和声子分散的潜力。我们将一组广泛的缺陷结构,表面和表面重建的形成能与DFT参考计算进行了比较。目前的工作证明了在同一ML模型中结合的能力,即无定形碳所需的先前获得的灵活性[Phys。 Rev. B,95,094203,(2017)]具有晶烯石墨烯所需的高数值精度[Phys。 Rev. B,97,054303,(2018)],从而提供了原子间潜力,该潜力将适用于广泛的批量和纳米结构碳的广泛应用。
We present an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. The potential, named GAP-20, describes the properties of the bulk crystalline and amorphous phases, crystal surfaces and defect structures with an accuracy approaching that of direct ab initio simulation, but at a significantly reduced cost. We combine structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained through an optimisation of the many-body smooth overlap of atomic positions (SOAP) descriptor. We rigorously test the potential on lattice parameters, bond lengths, formation energies and phonon dispersions of numerous carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces and surface reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon [Phys. Rev. B, 95, 094203, (2017)] with the high numerical accuracy necessary for crystalline graphene [Phys. Rev. B, 97, 054303, (2018)], thereby providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms of bulk and nanostructured carbon.